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We study domain-wall excitations in two-dimensional random-bond Ising spin systems on a square lattice
with side length L, subject to two different continuous disorder distributions. In both cases an adjustable
parameter allows tuning of the disorder so as to yield a transition from a spin-glass ordered ground state to a
ferromagnetic ground state. We formulate an auxiliary graph-theoretical problem in which domain walls are
given by undirected shortest paths with possibly negative distances. Due to the details of the mapping, standard
shortest-path algorithms cannot be applied. To solve such shortest-path problems we have to apply minimum-
weight perfect-matching algorithms. We first locate the critical values of the disorder parameters, where the
ferromagnet to spin-glass transition occurs for the two types of the disorder. For certain values of the disorder
parameters close to the respective critical point, we investigate the system size dependence of the width of the
average domain-wall energy (~L? and the average domain-wall length (~L%). Performing a finite-size scal-
ing analysis for systems with a side length up to L=512, we find that both exponents remain constant in the
spin-glass phase, i.e., §~-0.28 and d,;~1.275. This is consistent with conformal field theory, where it seems
to be possible to relate the exponents from the analysis of stochastic Loewner evolutions via dy—1=3/
[4(3+ 6)]. Finally, we characterize the transition in terms of ferromagnetic clusters of spins that form, as one

proceeds from spin-glass ordered to ferromagnetic ground states.
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I. INTRODUCTION

Ising spin glasses (ISGs) are among the most-basic mod-
els of disordered systems that allow for the study of phase
transitions in the presence of quenched disorder. ISGs are
elaborately studied in statistical physics!~* and despite sev-
eral decades of active research they attract a constant inter-
est, challenging with still not well understood traits and un-
resolved questions. In the scope of this paper we investigate
ground-state (GS) spin configurations and minimum-energy
domain-wall (MEDW) excitations in a two-dimensional (2D)
random-bond ISG. In brief, MEDWs are topological excita-
tions that are induced by a change in the boundary conditions
(BCs) from periodic to antiperiodic along one boundary of
the system. In particular we are interested in the scaling
properties of MEDWs close to the critical point at which the
T=0 spin glass (SG) to ferromagnet (FM) transition occurs.
From a phenomenological point of view, the physics of the
SG ordered phase of ISGs with short ranged interactions,
such as the 2D model considered here, can be described in
terms of the droplet scaling picture.>” Therein, the low-
temperature behavior is dominated by droplet excitations,
i.e., clusters of spins that are flipped relative to the GS spin
configuration. Within the droplet picture, excitations such as
MEDWSs possess an excitation energy AE that scales with
system size L as AE ~L° where 8 is referred to as stiffness
exponent. The value of 6 is assumed to be universal for all
types of excitations and constant within the whole SG phase.
Moreover, in a statistical sense, they are self-similar fractals
characterized by a fractal dimension d; that is defined by the
scaling of the average MEDW length as (/) ~ L%. The advan-
tage of working at zero temperature is that the GS problem
for the particular setup studied here can be solved by means
of exact combinatorial-optimization algorithms®'2 whose
running time increases only polynomially with the system

1098-0121/2009/79(18)/184402(9)

184402-1

PACS number(s): 75.50.Lk, 02.60.Pn, 75.40.Mg, 75.10.Nr

size. Hence, very large systems can be treated exactly, giving
very precise and reliable estimates for the observables. For
2D lattices, where the interaction strengths (bonds) between
adjacent spins are drawn from a Gaussian distribution with
zero mean and unit width, domain-wall (DW) calculations
using such algorithms resulted in the estimates
6=-0.287(4) (Refs. 13 and 14) and d;=1274(2)."" The
negative value of the stiffness exponent indicates that the
excitation energy required to introduce a MEDW gets negli-
gibly small as L— ¢ and thus, thermal fluctuations prevent a
spin-glass ordering for any nonzero temperature. The above
value of the stiffness exponent was later on confirmed for
continuous disorder distributions different from the Gaussian
bond distribution,'® for droplet excitations respecting a
Gaussian distribution of the bonds,'"!” and quite recently
also for droplets within the *J model.2® Furthermore, recent
studies suggested that MEDWs respecting a Gaussian distri-
bution of the bonds can be described by stochastic Loewner
evolutions (SLEs).?!?> SLEs are generated by a stochastic
differential equation driven by a Brownian motion. They de-
scribe the continuum limit for various 2D random curves and
their geometric properties relate to the statistics of several
critical interfaces.?*> Within conformal field theory it further
seems to be possible to relate the DW fractal dimension to
the stiffness exponent by means of the relation d,—1
=3/[4(3+ 60)], subsequently referred to as SLE scaling rela-
tion. For the pure spin glass, this is in agreement with the
numerical estimates of 6 and d; stated above.

Here, we consider a random-bond Ising model that allows
us to investigate the SG to FM transition at zero temperature
by tuning the mean value of the underlying disorder distri-
bution. In a previous work, the related =J model was studied
in two dimensions.!'® There exact matching algorithms to find
GSs were applied. It was found that, in the limit of large
system sizes, the SG to FM transition occurs at a fraction
p.=0.103(1) of antiferromagnetic bonds (—J) among ferro-
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magnetic bonds (+J). Furthermore, the critical exponents v
and B that describe the divergence of the correlation length
and the order parameter were found to be v=1.55(1) and B
=0.09(1). Due to the discreteness of the distribution, the
DWs are not unique and cannot be sampled in equilibrium
for large systems. Hence the fractal dimension has not been
determined in a precise way so far.

To clarify whether the SLE scaling relation above holds
within the whole spin-glass phase, we use two different con-
tinuous distributions of the disorder, which allow us to cal-
culate the fractal dimension d; with high precision. For this
purpose, we perform GS calculations by means of exact
combinatorial-optimization algorithms and study the scaling
behavior of MEDW s close to the critical point where the SG
to FM transition occurs. At first, we perform a finite-size
scaling (FSS) analysis for systems of moderate sizes
(L=64) to locate the critical points at which the transitions
take place. Then we perform additional simulations for large
systems (L =512) close to and directly at the critical points
to get a grip on the scaling behavior of the MEDWs. Finally,
we characterize the transition using a finite-size scaling
analysis for the largest and second-largest ferromagnetic
clusters of spins within the GS spin configurations. These
clusters form as one proceeds from spin-glass ordered to fer-
romagnetic ground states. To summarize our results: we find
that the SLE scaling relation holds in the SG phase up to a
point very close to the respective critical points but not right
at the critical points. Moreover, MEDWs in the SG phase
scale like self-similar fractals while MEDWs in the ferro-
magnetic phase display a self-affine scaling behavior.

The paper is organized as follows. In Sec. II we introduce
the model and describe the algorithmic techniques we have
used in order to obtain MEDWSs. In Sec. III we present the
results of our numerical simulations. We conclude with a
summary in Sec. IV.

II. MODEL AND METHOD

We performed GS calculations for two-dimensional
random-bond Ising spin systems with nearest-neighbor inter-
actions. The respective model consists of N=L XL spins o
=(oy,...,0y) with o;= = 1, located on the sites of a regular
square lattice. The energy of a given spin configuration is
measured by the Edwards-Anderson Hamiltonian

H(0) =~ 2 Jy0,0;, (1)
()
where the sum runs over all pairs of adjacent spins with
periodic BCs in the x direction and free BCs in the y direc-
tion. Therein, the bonds J;; are quenched random variables
drawn from a given disorder distribution. Subsequently, we
distinguish two types of the bond disorder:

(1) Model I, where one realization of the disorder consists
of a random fraction p of ferromagnetic bonds and a fraction
(1-p) of bonds that are drawn from a Gaussian distribution
with zero mean and unit variance, i.e.,

Pi(J) = (1 - plexp(- 2)\2m+pdJ—1).  (2)

There exists a critical value p,. of the disorder parameter that
separates a spin-glass phase (p<<p,) from a ferromagnetic
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phase (p>p.). As limiting cases we can identify the pure
Ising SG at p=0 and the ordinary Ising ferromagnet at p=1.
A similar type of disorder was used earlier for Monte Carlo
simulations that where carried out to study the FM to SG
transition in three dimensions and to numerically verify the
absence of an equilibrium “mixed” ferromagnetic-SG phase
for the respective model.?*

(2) Model II, where the bond strengths are drawn from a
Gaussian distribution with mean u; and width oy, i.e.,

Pu(J) = exp[~ (J - ) (202) J(\2707)). (3)

As a function of the reduced variable r=07;/ u,;, we expect to
find a ferromagnetic phase (spin-glass phase) for r<r,
(r>r.). An earlier DW renormalization-group study of small
systems? supported by transfer-matrix calculations reported,
among other things, a zero-temperature FM to SG transition
at r,=0.961(10) with »=1.42(8). Further, for the pure SG
(m;=0), an extrapolation of the DW free energy to zero tem-
perature resulted in a stiffness exponent #=—0.281(5). The
fractal properties of the DWs were not studied in this work.

In the above two models, the bonds are allowed to take
either sign, where a value J;;>0 signifies a ferromagnetic
coupling that prefers a parallel alignment of the coupled
spins while a value J;;<<0 indicates an antiferromagnetic
coupling in favor of antiparallel aligned spins. The compet-
ing nature of these interactions gives rise to frustration. A
plaquette, i.e., an elementary square on the lattice, is said to
be frustrated if it is bordered by an odd number of antiferro-
magnetic bonds. In effect, frustration rules out a GS in which
all the bonds are satisfied.

Here, our intention is to get a grip on the geometric prop-
erties of minimum-energy DWs. These are topological exci-
tations that are defined, for each realization of the bond dis-
order, relative to two spin configurations: o,, a GS spin
configuration with respect to periodic BCs further character-
ized by the configurational energy Ej,, and o, a GS respect-
ing antiperiodic BCs characterized by the energy E,,. Anti-
periodic BCs are realized by inverting the sign of all the
bonds along one column in the x direction. Comparing the
orientation of the spins in the two GSs, one can distinguish
two regions on the lattice: one where the orientation of a spin
is the same in both GSs and another where the orientation of
a spin differs regarding the two GSs. Within these regions,
the bonds between adjacent spins are either satisfied or bro-
ken in both GSs likewise. Bonds that connect spins that be-
long to different regions on the lattice are satisfied in exactly
one of the two GSs. The MEDW is the interface in between
the two regions and as such, it runs perpendicular to the
latter bonds. It has the property that its excitation energy
OE=E,,—E, is minimal among all possible DWs that span
the system in the direction with the free BCs. The basic
observables related to a DW are its over all length I, its
roughness /4, and its excitation energy 6E. MEDWs for three
different values of the disorder parameter p introduced above
(see model I) are illustrated in Fig. 1.

We now give a brief description of the algorithm that we
used to determine the MEDWSs. A more extensive description
of the individual steps of the algorithm can be found in Ref.
15. For a given realization of the bond disorder, we first
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FIG. 1. Domain-wall samples for systems of side length L=64
and different values of the disorder parameter p (model I). The
samples are taken in the SG phase (p=0.60), right at the critical
point (p=0.66), and in the FM phase (p=0.72). Besides the system
size L, the DW length / and its roughness % are illustrated.

determine a GS spin configuration consistent with periodic
BCs in the x direction. Besides the magnetization m;
=|2,0//L* and the energy, this tells which bonds are
satisfied/broken in the GS for that particular disorder sample.
For the 2D ISG on planar lattice graphs, i.e., when there are
periodic BCs in at most one direction, exact GS spin con-
figurations can be found in polynomial time. This is possible
through a mapping to an appropriate minimum-weight
perfect-matching problem,®' a combinatorial-optimization
problem known from computer science. Here, we state only
the general idea of this method. For this mapping, the spin
system needs to be represented by its frustrated plaquettes
and paths connecting those pairwise, i.e., matching them. In
doing so, individual path segments are confined to run per-
pendicular across bonds on the spin lattice. Those bonds that
are crossed by path segments are not satisfied in the corre-
sponding spin configuration. The weight of the matching is
just the sum of the absolute values of all bond strengths that
relate to unsatisfied bonds. Hence, finding a minimum-
weight perfect matching on the graph of frustrated plaquettes
then corresponds to finding a spin configuration with a mini-
mal configurational energy, hence a GS. The use of this ap-
proach permits the treatment of large systems, easily up to
L=512, on single processor systems. This GS spin configu-
ration can further be used to set up a weighted dual of the
spin lattice, whose weighted edges comprise all possible DW
segments. The weighted dual is constructed as follows: set
up a new graph G=(V,E,w), whose sites i € V relate to the
elementary plaquettes on the spin lattice. It is necessary to
introduce two extra sites that account for the free BCs. Two
sites are joined by an undirected edge e € E, if the corre-
sponding plaquettes have a bond in common. For the weight
assignment on the dual, consider a bond on the spin lattice
having a coupling strength J;;. If the bond is satisfied (bro-
ken) regarding the GS, the corresponding dual edge e gets a
weight w(e)=-2|J;| [w(e)=+2|J;[]. The weighted dual now
comprises all possible DW segments, where the weight of an
edge is equal to the amount of energy that it would contrib-
ute to a DW. Every possible DW links both extra sites on the
dual, where the energy of a DW is the sum of the weights
along the according lattice path. So as to have minimum
energy, it is beneficial for a DW to include (avoid) edges
with a negative (positive) edge weight. Consequently, a
MEDW is a minimum-weight path on the dual that joins both
extra sites. The dual G is an undirected graph that allows for
negative edge weights and so, to construct minimum-weight
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paths on G, it requires matching techniques.?® Therefore we
need to map the dual to an auxiliary graph G, and find a
minimum-weight perfect matching on G, which we finally
can relate to a minimum-weight path on G. For each realiza-
tion of the disorder, this procedure yields an explicit repre-
sentation of the minimum-energy DW that we can easily
probe for its geometric properties. A more detailed descrip-
tion of the algorithm can be found in Ref. 15. In the follow-
ing we will use the procedure outlined above to investigate
MEDWs for the random-bond Ising models introduced
earlier.

III. RESULTS

So as to characterize the scaling behavior of MEDWs for
the two disorder distributions introduced above, we first of
all need to find the critical values p, (model I) and r, (model
II) of the disorder parameters at which the 7=0 SG to FM
transition takes place. Reliable estimates for the location of
the critical points can already be obtained from compara-
tively small system sizes; here we use L=24, 32, 48, and 64.
In general, one has to find a proper balance of system size
and sample numbers that affect finite-size effects and statis-
tical error, respectively.”’ Subsequently we can probe the
asymptotic scaling behavior of the MEDWs at fixed values
of the disorder parameters close to the critical points for
large system sizes up to L=512.

A. Finite-size scaling analysis to characterize the 7=0 spin
glass to ferromagnet transition

First, we will discuss the results for the model I disorder
and afterward report the results for the model II disorder
more briefly. As pointed out above, at large values of p, there
exists an ordered ferromagnetic phase while for small values
of p a spin-glass phase exists. Therefore, a proper order pa-
rameter characterizing the respective SG-FM transition is the
magnetization m; =|2,0;|/L* for a system of size L. In the
following, we perform a FSS analysis in order to locate the
critical point p,. and also estimate the critical exponents that
describe the scaling behavior of the magnetization at critical-
ity. The Binder parameter®® associated with the magnetiza-

tion reads
1, mp )

S i) @
and is expected to scale as b;(p) ~ fi[(p—p,)L""], where f,
is a size-independent function and v signifies the critical ex-
ponent that describes the divergence of the correlation length
as the critical point is approached. Here, we simulated square
systems of size L=24, 32, 48, and 64 at various values of the
disorder parameter p. Observables are averaged over up to
3 X 10* (2 10*) samples for the smallest (largest) systems
and we utilized the data collapse anticipated by the scaling
assumption above to obtain p,=0.660(1) and v=1.49(7) with
a quality S=1.25 of the data collapse,” see Fig. 2(a). The
value of the critical exponent v agrees within error bars with
the value v»=1.42(8) obtained using a transfer-matrix
approach.? Note that both the numerical values of p, and v
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FIG. 2. Results of the FSS analysis for the Binder parameter b,
associated with the magnetization, for different system sizes L. The
main plot shows the unscaled data near the critical point while the
inset illustrates the data collapse obtained for (a) model I: p,
=0.660(1) and »=1.49(7), (b) model II: r.=0.970(2) and v
=1.49(4).

further agree with those that characterize the negative-weight
percolation of loops and paths on 2D lattices,*® highlighting
the close connection of the two optimization problems. The
order parameter of the transition is expected to scale conform
with the assumption m;(p) ~L™P"f,[(p—p.)L""], f, being a
size-independent function, where the magnetization expo-
nent B was obtained after fixing v and p, to the values stated
above. The most satisfactory data collapse (S=1.83) was ob-
tained using B=0.097(6), see Fig. 3. In general, the above
scaling relation holds best near the critical point and one can
expect that there are corrections to scaling off criticality. As a
remedy, we restricted the latter scaling analysis to the inter-
val [-0.5, +0.2], enclosing the critical point on the rescaled
abscissa. Note that the values for the exponents found here
agree with those found from GS calculation for the *=J
model®! within the error bars. As an alternative order param-
eter, we also studied the average path length (I) of the
MEDWs, where we expect a scaling of the form

Iy~ Lf3[(p = p L] (5)

Therein, dj‘; signifies the fractal dimension of the DWs at the
critical point and f3 is another size-independent function.
From a finite-size scaling analysis restricted to the interval
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my(p)

FIG. 3. Results of the FSS for the average magnetization m;(p)
for different system sizes L for model I disorder. The main plot
shows the unscaled data near the critical point while the inset illus-
trates the data collapse obtained for the parameters p,=0.660(1),
v=1.49(7), and B=0.097(6).

[-0.75,+0.5] on the rescaled abscissa, we obtained d;
=1.222(4) with a quality S=1.33, see Fig. 4 (note that for a
more clear presentation, the argument along the abscissa in
Fig. 4 reads |p—p.L""). For the somewhat larger interval
[-1,+0.5] we found dy= 1.223(4) with S=1.40 in agreement
with the above value. Since we expect the average MEDW
length at p=0 to scale as (I)~ L% (here, p=0 corresponds to
the pure spin glass studied in Ref. 15), where d;=1.274(2),
we can further estimate the asymptotic behavior f3(x)
~x"d=d of the scaling function in Eq. (5) as x— —c. This
can be seen from the top branch in Fig. 4, where the function
f3(x) ~x%%80) is shown as solid line and agrees well with the
data. Note that via Eq. (5) the DWs at p, exhibit the fractal
dimension d;' while for all values p<p,, the fractal dimen-
sion is given by d;. Hence, the scaling ansatz Eq. (5) is based
on the assumption that behavior in the SG phase is universal,

1.3

L%

0

0.7  45-075 0(p-py) L™
1 1

0.1 0.25 0.5 1.5
|P'Pc| L]/v

FIG. 4. Results of the FSS analysis for model I disorder. The
main plot illustrates the FSS of the average MEDW length (/) for
different system sizes L, where the best data collapse is obtained for
the parameters p,=0.660(1), »=1.49(7), and d;=1.222(4). The
solid and dashed lines illustrate the asymptotic scaling behavior of
both branches as described in the text. The inset shows the scaling
of the probability P;(p) that the roughness of the MEDW is equal to
the system size L.
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TABLE 1. From left to right: disorder parameter, fractal dimen-
sion, roughness exponent, and exponents that describe the scaling
of the mean and width of the MEDW energy distribution. The fig-
ures for p=0 are taken from Ref. 15.
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TABLE II. From left to right: disorder parameter r=o7;/ u;, frac-
tal dimension, roughness exponent, and exponents that describe the
scaling of the mean and width of the MEDW energy distribution.
The figures for r=2, i.e., u;=0, are taken from Ref. 15.

p ds d, 6, 0, r ds d, 0, 6,
0.00 1.274(2) 1.008(11) —-0.287(4) -0.287(4) %o 1.274(2) 1.008(11) —-0.287(4) —-0.287(4)
0.60 1.275(1) 1.003(3) —-0.28(1) -0.28(2) 1.111 1.275(7) 0.994(4) —0.294(6) —-0.295(5)
0.64 1.275(2) 1.012(4) —-0.28(1) -0.28(4) 1.010 1.286(3) 1.024(2) -0.311(2) —-0.35(1)
0.66 1.222(1) 1.002(2) 0.17(2) 0.16(1) 0.970 1.222(6) 0.999(3) 0.15(1) 0.15(1)
0.68 1.05(2) 0.74(3) 0.97(4) 0.35(3) 0.935 1.085(4) 0.782(3) 0.96(2) 0.31(2)
0.72 1.022(1) 0.698(6) 1.052(3) 0.27(2) 0.833 1.015(1) 0.651(3) 1.028(1) 0.31(2)

which is tested below for much larger systems explicitly.

For the “ferromagnetic” branch (x— +), a similar con-
sideration yields the asymptotic scaling f3(x) ~x~%3() indi-
cated as a dashed line in Fig. 4. Further, we found that the
probability P;(p) that the MEDW roughness is equal to L
scales as P;(p)=f4[(p—p.)L""], shown in the inset of Fig. 4.
In the ferromagnetic phase the value of P; tends toward zero
and in the spin-glass phase it saturates around P;=0.12.
Hence, as pointed out in Ref. 24, an asymptotic nonzero
probability that the MEDW roughness is O(L) can be used as
an order parameter to detect the SG phase.

Regarding model II, we simulated systems of size L=24,
32, 48, and 64 at different values of the disorder parameter r.
Here, we fixed the width of the disorder distribution to the
value o;=1 and we vary only its mean w;. Observables are
averaged over up to 3 X 10* (2 X 10*) samples for the small-
est (largest) systems, and we utilized the data collapse antici-
pated by the scaling assumptions for the Binder parameter
[see Fig. 2(b)] and the magnetization (not shown) to obtain
the values r,=0.970(2), v=1.49(4) (§=1.0), and 8=0.09(1)
(S=0.46). Note that the numerical values of r, and v agree
within error bars with the values r,=0.961(10) and v
=1.42(8) obtained using a transfer-matrix approach.”> The
scaling of the average MEDW length here yields a numerical
value d;=1.249(5) (S=1.99) which can only be considered
as an effect of the finite system size, see the discussion be-
low. Further, the probability that the MEDW roughness
equals L tends toward P;~0.12 in the SG phase, in agree-
ment with the above results.

B. Scaling behavior at fixed values of p and r

We have carried out further simulations at a couple of
selected values of p and r, see Tables I and II, in order to
probe the asymptotic scaling behavior of MEDWs regarding
the two disorder distributions introduced above. We therefore
considered systems of size up to L=512 with 1000 realiza-
tions of the disorder. In particular, we are interested in the
asymptotic scaling behavior of the average MEDW length (/)
with respect to the system size L, defining the DW fractal
dimension d; via (I) ~ L. We further study the scaling of the
average MEDW roughness (h), i.e., the extension of the lat-
tice path in the direction of the periodic BCs, which defines
the roughness exponent d, by means of (k) ~ L%. Both these

observables relate only to the geometric properties of the
MEDW, see Fig. 1. Finally, we investigate the size scaling of
the mean AE=(|S8E|)~L% and width o(SE)=\(SE*)—(SE)*
~ L% of the distribution of MEDW excitation energies.
Again, we first discuss the results for model I disorder and
afterward state the results for model II disorder more briefly.
The asymptotic scaling behavior of the average DW length
allows one to obtain the fractal dimension by using a direct
fit to the power-law data over the entire range of system sizes
L. A reliable and more systematic alternative is to investigate
a sequence of effective (local) exponents d‘;-ff(L) that describe
the scaling of (I) within intervals of, say, three successive
values of L. The change in the effective exponents for in-
creasing system sizes further shows how the scaling behavior
is affected by the finite size of the simulated systems. From
the sequence of effective exponents one can extrapolate the
asymptotic fractal dimension by means of a straight-line fit
to the plot of d;“(L) against the inverse system size 1/L.
Figure 5 shows the effective exponents obtained for three
and four successive values of L at different values of the
disorder parameter p. Therein, the asymptotic fractal dimen-
sions df, as listed in Table I, were estimated from the effec-
tive exponents resulting from intervals of four successive

12 p=0.60 HH
:]\ HH
S~ 0.64 ro1
. ro-
0.66 &
- FA o
= 0.68 A
}_v_{
0.72 4
o
1 1 1 1 1
0 0.005 0.01 0.015 0.02

1/L

FIG. 5. Extrapolation of the asymptotic fractal dimension for
model I. Analysis of the sequence of effective exponents d;-ff(L) that
describe the scaling of the average MEDW length within intervals
of three (open symbols) and four (filled symbols) successive values
of L, according to {I)~L%. The asymptotic value of the fractal
dimension dy is extrapolated from the plot of d_)eff against 1/L as the
intersection of a straight-line fit to the data with the ordinate.
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system sizes. The asymptotic values for d,, 6,, and 6,, listed
in Tables I and II, where estimated using a similar procedure.
Our results for the fractal dimension and the stiffness expo-
nent at p=0.60 and 0.62 clearly support the estimates for the
pure SG at p=0. They are in agreement with the SLE scaling
relation and hence we could verify that the SLE scaling re-
lation holds up to values of the disorder parameter close to
Pe-
At the critical point we find that the estimates of d; and 6,
are not in agreement with the SLE scaling relation. However,
MEDWs at p, are self-similar with the scaling dimension
d;=1.222(1) and a roughness compatible with unity. Here,
the numerical value of d; as estimated from the effective
exponents compares nicely to the value d;=1.222(4) found
from the previous FSS.

We further find that dy and 6, in the ferromagnetic phase
above the critical point are not consistent with the SLE scal-
ing relation. There, the overall length of the DW increases
linearly with the system size, i.e., the fractal dimension ex-
trapolates toward dy=1, whereas for the roughness exponent
d,<1 is found. This indicates that, albeit the MEDW is al-
lowed to bend and turn back and forth on the lattice, the
resulting overhangs are not significant for their scaling be-
havior. Further, the cost needed to introduce the DW grows
almost linearly with the system size while the rms fluctuation
is characterized by an exponent significantly smaller than
that. Hence, MEDWs in the ferromagnetic phase display a
self-affine scaling, governed by exponents that are in reason-
able agreement with those that describe the scaling of the
transverse deviation (~L*?) and the rms excitation energy
(~L'3) of pinned DWs in an ordinary Ising FM with ran-
domly placed impurities.>® Further, the scaling behavior
found here agrees with that observed for directed and undi-
rected optimal paths on 2D lattices subject to weak
disorder® or analogously the scaling of directed polymers in
random media.>*

For model II disorder, our findings are qualitatively the
same; hence we only state the numerical results without
showing figures. The numerical values of d, and 6, within
the SG phase (r>r.) are in agreement with the SLE scaling
relation proposed for the pure SG. In particular, at r=1.01 we
find d;=1.286(3) and 6,=-0.35(1). Here, the data for (/)
gives a nice straight line on a double-logarithmic scale,
where we find d;=1.284(2) from a fit to the pure power-law
data excluding L=100. The situation for the data corre-
sponding to o(JSE) is somewhat different, i.e., the data still
exhibits a curvature within the range of accessible system
sizes on a double-logarithmic scale. This does not allow fit-
ting of all the data at once, assuming a power-law fit func-
tion. Consequently, the most reliable estimate of the
asymptotic value of #, can be obtained by an analysis of the
local exponents as described above. The reason for this dif-
ficulty might stem from the fact that the value r=1.01 of the
disorder parameter is located in the transition region close to
the critical point. Albeit these values differ slightly from the
values 6,~-0.28 and d;~1.274 that one would expect to
find in the SG phase, they are in agreement with the SLE
scaling relation. The numerical values for the exponents right
at the critical point are again not in agreement with the pro-
posed scaling relation. However, the asymptotic fractal di-
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FIG. 6. Samples of GS spin configurations for systems of side
length L=64 and r=1.1,0.969,0.9 (from left to right) for model II.

mension extrapolated from the effective exponents reads dy
=1.222(6) and is in agreement with the corresponding value
at the critical point for model I disorder. Further, if we ana-
lyze the scaling of the average MEDW length restricted to
system sizes L<64, we find a value of d;=1.246(4), consis-
tent with the value encountered in the previous FSS analysis
that was denoted as a finite-size effect. Within the ferromag-
netic phase (r<r.), MEDWs again display a self-affine scal-
ing behavior, further characterized by exponents that ex-
trapolate toward those that describe the scaling of the
transverse deviation and the rms excitation energy of pinned
DWs in an ordinary Ising FM with randomly placed
impurities.

C. Finite-size scaling analysis of ferromagnetic spin domains
at the T=0 spin glass to ferromagnet transition

As we decrease the value of the disorder parameter in
model II from r=2 (SG phase) to r<r, (FM phase), we can
identify ferromagnetic clusters of spins, i.e., groups of
nearest-neighbor spins with similar orientation, with increas-
ing size (see Fig. 6). Here, as an alternative way to charac-
terize the SG to FM transition at 7=0, we perform a FSS
analysis of the largest and second-largest ferromagnetic clus-
ters found for the GS spin configuration for each realization
of the disorder. Such an analysis has been performed previ-
ously for standard percolation.>> As above, we simulated sys-
tems of size L=24, 32, 48, and 64 at different values of the
disorder parameter . We kept the width of the disorder dis-
tribution at the fixed value o;=1 and we vary only its mean
;. Observables are averaged over 2 X 10* samples for each
system size. Subsequently, the relative size of a cluster speci-
fies the number of spins that comprise the cluster divided by
the number of spins on the lattice. Within our analysis we
found that the average ratio (M,/ M) of the relative sizes of
the second-largest and the largest ferromagnetic clusters
scales as

(MyIM,) ~ fo[(r=r)LV"F], (6)

therein 7. is the location of the critical point and v signifies
the correlation length exponent. From a data collapse, re-
stricted to the interval [—1.5, +1.5] on the rescaled abscissa,
we obtain the numerical values r.=0.969(2) and wp
=1.49(4) with a quality S=0.85, see Fig. 7. Both values
agree within error bars with those obtained from the Binder
parameter analysis. If we allow for a nonzero scaling dimen-
sion according to (M,/ M)~ L™f¢[(r—r.)L""F], we yield r,
and vy as above and further k=0.004(13) (S=0.82, [-2.0,
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FIG. 7. FSS analysis of ferromagnetic domains at 7=0 for
model II. The main plot shows the average size ratio (M,/M) of
the second-largest and largest ferromagnetic clusters, and the inset
illustrates the data collapse under the respective scaling assumption,
obtained for r,=0.969(2) and vy=1.49(4).

+1.0]). The numerical value of « is compatible with zero and
hence supports the scaling assumption (6) for the size ratio.
Moreover, right at r. we found the critical value (M,/M,)
=0.122(1). For completeness we note that we yield qualita-
tively similar findings for the ratio (M,)/{(M ) with the criti-
cal value (M,)/{M)=0.098(1). The difference between the
two ratios is simply due to the cluster-size fluctuations at
criticality.

As an order parameter we measure the relative size M, of
the largest ferromagnetic cluster for each of the GSs. From
the scaling assumption (M)~ L™PF/*Ff,[(r—r,)L""F] and the
values of r. and v, stated above, we obtain B=0.039(4)
(§=0.54, [-0.5,+0.5]), see Fig. 8(a). A similar scaling as-
sumption for the second-largest cluster yields B,=0.05(3)
($=0.26, [-0.5,+0.25], not shown). Albeit the numerical
value of Bp, is less precise and somewhat larger compared
to Bp, both exponents are compatible with Eq. (6).

The finite-size susceptibility XL=N[<M%>—(M %] describ-
ing the fluctuations of the size of the largest ferromagnetic
cluster obeys the scaling form y; ~ LY rfy[ (r—r,)L""F] with
another critical exponent 7y, see Fig. 8(b). Together with the
values of r, and vp we estimate yy=2.9(1) (5=0.85,
[-1.5,+1.0]). These exponents further are in agreement with
the hyperscaling relation yp/ vp+28p/ vp=d.

We performed further simulations for the =J model with
a varying fraction 0.0=p=0.5 of antiferromagnetic bonds.
In principle, the GS for this model is highly degenerate.’
Here, we investigate only one randomly obtained GS for
each realization of the disorder. From a FSS analysis for
systems of size L=32, 48, 64, and 96 where averages are
computed over 3 X 10* samples, we found p,.=0.1022(3),
vp=1.47(6), Br=0.037(4), and yr=2.8(1). The numerical
values of the critical exponents for the *J model agree,
within error bars, with those obtained for model II above.
Further, the critical concentration of antiferromagnetic bonds
is in fair agreement with the value p,.=0.103(1) found from
an analysis of the Binder parameter within a previous
study.’! Regarding the FSS analysis and compared to Ref.
31, we used a larger number of interpolation points that en-
close the critical point on the rescaled abscissa (24 data
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FIG. 8. FSS analysis of ferromagnetic domains at 7=0 for
model II. (a) Normalized size (M) of the largest ferromagnetic
cluster, and (b) finite-size susceptibility XL:N[(M?)—(M 7] asso-
ciated with the size of the largest cluster. The main plots show the
unscaled data near the critical point while the insets illustrate the
data collapse under the respective scaling assumptions.

points in the interval [—0.5:0.5] for each system size). As a
result we obtained p,. with increased precision although our
system sizes are somewhat smaller. Finally, right at p,. we
found the critical ratios (M,/M)=0.104(1) and (M,)/(M)
=0.083(1). The numerical values of these ratios differ
slightly from those obtained for model II above. However, in
both cases we observe (M,/M )= 0.125(M,)/{M ).

As mentioned above, the scaling of the size ratio accord-
ing to Eq. (6) was also confirmed for usual random
percolation.® It stems from the fact that the largest and
second-largest clusters exhibit the same fractal dimension at
the critical point. For usual percolation this was shown
earlier.’’” While we could verify Eq. (6) for the disorder in-
duced SG to FM transition at 7=0 numerically, we found
within additional simulations no such scaling behavior for
the thermal phase transition in the 2D Ising ferromagnet.

IV. SUMMARY

We have investigated MEDWs for two-dimensional
random-bond Ising spin systems, regarding two different
continuous bond distributions. For both models, a disorder
parameter could be used to distinguish between a spin-glass
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ordered or a ferromagnetic ground state. We performed a
FSS analysis to locate the critical points in both models that
separate the spin-glass phase from the ferromagnetic phase.
We found that, within the spin-glass phase, the exponents
that describe the size scaling of the width of the average DW
energy and the average DW length are approximately con-
stant and consistent with the SLE scaling relation previously
proposed for the pure spin glass. Right at the critical point
and in the ferromagnetic phase of the models, the accordant
exponents are not in agreement with the SLE scaling
relation.

It is intriguing to note that the fractal dimension of the
DWs at the critical point of both disorder types studied here
agrees with the fractal dimension d,,=1.22(2) of optimal
paths in the strong disorder limit on 2D lattices.®® This is
quite interesting since the optimization criteria of the two
problems are rather distinct: in the strong disorder limit, non-
negative edge weights are drawn from a very broad distribu-
tion. The cost of a path between two sites on the lattice is
then dominated by the largest edge weight along the path.
Consequently, so as to find an optimal path, one has to mini-
mize the largest weight along the path. In contrast to this, the
cost of a MEDW is the sum of all edge weights along the
respective lattice path. There are positive and also negative
edge weights that can cancel each other, at least partially. A

PHYSICAL REVIEW B 79, 184402 (2009)

common feature of the above two problems is that, in strik-
ing contrast to usual shortest-path problems, there is no im-
mediate negative feedback for the inclusion of additional
path segments. In usual shortest-path problems, where there
are only positive edge weights such as, e.g., optimal paths
subject to weak disorder, the inclusion of additional path
segments leads very likely to an increased path weight.
Hence, positive-weight minimum-weight paths tend to be
short, which results in an average end-to-end distance ~L.

Finally, we have characterized the SG to FM transition at
T=0 in terms of the largest and second-largest ferromagnetic
clusters of spins found for the GS spin configurations. The
respective critical exponents support our previous results and
they appear to be consistent with a hyperscaling relation
known from scaling theory.
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